

Notch1 mutations to define a subgroup of adenoid cystic carcinoma (ACC): Tumor stage, propensity to bone and liver metastasis, risk of relapse, and overall survival. (Abstract #6081)

THE UNIVERSITY OF TEXAS

MDAnderson

Cancer Center

Renata Ferrarotto, Mitani Yoshitsugu, Lixia Diao, Jing Wang, Monique Nilsson, Bonnie Glisson, Merrill S Kies, William N William Jr., Michael E Kupferman, Patrick Zweidler-McKay, Andrew Futreal, Adel El Naggar, John V. Heymach.

Background:

- ACC corresponds to ~ 25% of salivary gland cancers
- It is chemotherapy refractory and there is no standard of care treatment for patients with metastatic disease
- ACC genotyping revealed alterations in the Notch (N) pathway in 13-29% of cases ^{1,2}
- One ACC patient identified in our institution with an activating Notch1 (N1) mutation achieved a partial response after 2 cycles of a N1 inhibitor in a phase I trial (Fig. 1)³

In this study, we investigate the clinical and pathologic characteristics of N1 mutant ACC.

Fig 1. N1 mutant ACC patient achieved a partial response upon treatment with the Notch1 inhibitor OMP-52M51, under the clinical trial NCT01778439. (Image provided as courtesy by Oncomed)

38% reduction of target lesions

- 28 yo gentleman, progressed through 4 lines of systemic therapy
- N1 activating mutations in the tumor (S2467fs* and L1600Q),
- cell-free DNA identified a 3rd mutation (V1721G)

Methods:

- N1 sequencing was performed in 102 pts (71 using WES and 31 using a 50 gene panel including N1 exons 26, 27, 34)
- IHC for N1 intracellular domain (NICD) was performed in 71 samples to evaluate its value as a surrogate for N1 activating mutations.
- Comparisons between tumor characteristics and clinical outcomes in patients with or without activating N1 mutations (PEST or HD domain) were performed.

Fig 2. N1 mutations identified in ACC

Image adapted from Reference 4

- N1 activating mutations in 14 pts (13.7%)
- Only 1 patient with a mutation in the EGF domain (non-activating)

Table 1. Patient's characteristics

Overall population characteristics	N or Median % or Range			
AGE	52	19-75		
SEX				
Male	63	62 %		
Female	39	38 %		
DISEASE SITE				
Maxillary sinus	20	20 %		
Base of tongue	17	17 %		
Parotid	12	12 %		
Palate	12 12 %			
Trachea	11	11 %		
Submandibular and sublingual	18	18 %		
Unknowns and others sites	12	12 %		
HISTOLOGICAL SUBTYPE				
Tubular	7	7 %		
Cribriform	34	33 %		
Solid	37	36 %		
Unknown	24	24 %		
T STAGE				
T1/T2	17	17 %		
T3	34	33 %		
T4	40	39 %		
Unknown	11	11 %		
DISEASE STAGE AT DIAGNOSIS				
1/11/111	42	41 %		
IVA/B	36	35 %		
IVC	16	16 %		
Unknown	8	8 %		
TREATMENT MODALITY TO THE PRIMARY TUMOR				
Surgery	94	92 %		
Concurrent chemoradiation	6	6 %		
No treatment	2	2 %		
ADJUVANT RADIATION THERAPY (+/- CT)	80	78 %		
SYSTEMIC THERAPY	45	44 %		

Fig 3. N1 pathway activation demonstrated by IHC for NICD

Results:

• 71 samples tested for IHC: Sensitivity = 100%; Specificity = 51.6%

Table 2. Frequency of tumor recurrence and overall patients outcomes

	N or Median	% or moths	
TUMOR RECURRENCE			
Yes	81	79 %	
No	21	21 %	
RECURRENCE SITE			
Local	25	25 %	
Lung	53	52 %	
Pleura	16	16 %	
Bone	35	34 %	
Liver	13	13 %	
Others	24	24 %	
RECURRENCE FREE SURVIVAL	30.8	months	
OVERAL SURVIVAL	108.4	months	

Table 3. Correlations between clinico-pathologic characteristics and N1 mutational status

	N1 mut	N1 wt	OR	p value
Stage at diagnosis				
1/11/111	2/14 (14%)	40 /88 (45%)		
IVA/B	8/14 (57%)	28/88 (32%)		0.03
IVC	4/14 (29%)	12/88 (14%)		
Unknown	0 (0%)	8/88 (9%)		
Histological subtype				
Tubular/cribriform	1/14 (7%)	40/88 (45%)		0.002
Solid	11/14 (79%)	26/88 (30%)		0.003
Unknown	2/14 (14%)	22/88 (25%)		
Disease recurrence				
Local	7/14 (50%)	18/88 (20%)	3.8	0.038
Lung	5/14 (36%)	48/88 (55%)	0.5	0.25
Pleura	1/14 (7%)	15/88 (17%)	0.4	0.69
Bone	9/14 (64%)	26/88 (30%)	4.2	0.01
Liver	5/14 (36%)	8/88 (9%)	5.4	0.01
Others	7/14 (50%)	17/88 (19%)	4.1	0.02

Fig 4. Recurrence free survival according to N1 mut status

Fig 5. Overall survival according to N1 mut status

Conclusions:

- N1 activating mutations occurs in 13.7% (14/102) of ACC pts
- N1 mutation defines a more aggressive phenotype, with a distinct pattern of metastatic spread, higher risk of relapse, and shorter overall survival
- The identification of genetic events that activate N1 and the encouraging response observed in an index case suggest an opportunity to further explore N1 as a therapeutic target in ACC.

References:

- 1. Stephens, P.J., et al., J Clin Invest, 2013.
- 2. Ho, A.S., et al., Nat Genet, 2013.
- 3. Patnaik, A., et al., Eur J Cancer, 2014.
- 4. Anderson ER, et al., Nat Rev Drug Discov, 2014.